机械齿轮传动

时间:2020-11-18 20:23 作者:admin

  声明:,,,。详情

  据史料记载,远在公元前400~200年的中国古代就巳开始使用齿轮,在我国山西出土的青铜齿轮是迄今巳发现的最古老齿轮,作为反映古代科学技术成就的指南车就是以齿轮机构为核心的机械装置。17世纪末,人们才开始研究,能正确传递运动的轮齿形状。18世纪,欧洲工业革命以后,齿轮传动的应用日益广泛;先是发展摆线齿轮,而后是渐开线世纪初,渐开线齿轮已在应用中占了优势。

  早在1694年,法国学者Philippe De La Hire首先提出渐开线年,法国人M.Camus提出轮齿接触点的公法线必须通过中心连线上的节点。一条辅助瞬心线分别沿大轮和小轮

  的瞬心线(节圆)纯滚动时,与辅助瞬心线固联的辅助齿形在大轮和小轮上所包络形成的两齿廓曲线是彼此共轭的,这就是Camus定理。它考虑了两齿面的啮合状态;明确建立了现代关于接触点轨迹的

  概念。1765年,瑞士的L.Euler提出渐开线齿形解析研究的数学基础,阐明了相啮合的一对齿轮,其齿形曲线的曲率半径和曲率中心位置的关系。后来,Savary进一步完成这一方法,成为现在的Eu-let-Savary方程。对渐开线齿形应用作出贡献的是Roteft WUlls,他提出中心距变化时,渐开线齿轮具有角速比不变的优点。1873年,德国工程师Hoppe提出,对不同齿数的齿轮在压力角改变时的渐开线齿形,从而奠定了现代变位齿轮的思想基础。

  19世纪末,展成切齿法的原理及利用此原理切齿的专用机床与刀具的相继出现,使齿轮加工具军较完备的手段后,渐开线齿形更显示出巨大的优走性。切齿时只要将切齿工具从正常的啮合位置稍加移动,就能用标准刀具在机床上切出相应的变付院套位齿轮。1908年,瑞士MAAG研究了变位方法并制造出展成加工插齿机,后来,英国BSS、美国AGMA、德国DIN相继对齿轮变位提出了多种计算方法。

  为了提高动力传动齿轮的使用寿命并减小其尺寸,除从材料,热处理及结构等方面改进外,圆弧齿形的齿轮获得了发展。1907年,英国人Frank Humphris最早发表了圆弧齿形。1926年,瑞土人Eruest Wildhaber取得法面圆弧齿形斜齿轮的专利权。1955年,苏联的M.L.Novikov完成了圆弧齿形齿轮的实用研究并获得列宁勋章。1970年,英国Rolh—Royce公司工程师R.M.Studer取得了双圆弧齿轮的美国专利。这种齿甩妹乃协轮现已日益为人们所重视,在生产中发挥了显著效益。

  齿轮是能互相啮合的有齿的机械零件,它在机械传动及整个机械领域中的应用极其广泛。现代齿轮技术已达到:齿轮模数O.004~100毫米;齿轮直径由1毫米~150米;传递功率可达 十万千瓦;转速可达 十万转/分;最高的圆周速度达300米/秒。

  齿轮在传动中的应用很早就出现了。影整公元前三百多年,古希腊哲学家亚里士多德在《机械问姜雄舟题》中,就阐述了用青铜或铸铁齿轮传递旋转运动的问题。中国古代发明的指南车中已应用了整套的轮系。不过,古代的齿轮是用木料制造或用金 属铸成的,只能传递轴间的回转运动,不能保证传动的平稳性,齿轮的承载能力也很小。

  随着生产的发展,齿轮运转的平稳性受到重视。1674年丹麦天文学家罗默首次提出用外摆线作齿廓曲线,以得到运转平稳的齿轮。

  18世纪工业革命时期,齿轮技术得到高速发展,人们对齿轮进行了大量的研究。1733年法国数学家卡米发表拘民遥了齿廓啮合基本定律;1765年瑞士数学家欧拉建议采用渐开线世纪出现的滚齿机和插齿机,解决了大量生产高精度齿轮的问题。1900年,普福特为滚齿机装上差动装置,能在滚齿机上加工出斜齿轮,从此滚齿机滚切齿轮得到普及,展成法夜汗拘雅加工齿轮占了压倒优势,渐开线齿轮成为应用最广的齿轮。

  1899年,拉舍最先实施了变位齿轮的方案。变位齿轮不仅能避免轮齿根切,还可以凑配中心距和提高齿轮的承载能力。1923年美国怀尔德哈伯最先提出圆弧齿廓的齿轮,1955年苏诺维科夫对圆弧齿轮进行了深入的研究,圆弧齿轮遂得以应用于生产。这种齿轮的承载能力和效率都较高,但尚不及渐开线齿轮那样易于制造,还有待进一步改进。

  齿轮的组成结构一般有轮齿、齿槽、端面、法面、齿顶圆、齿根圆、基圆、分度圆。

  轮齿简称齿,是齿轮上 每一个用于啮合的凸起部分,这些凸起部分一般呈辐射状排列,配对齿轮上的轮齿互相接触,可使齿轮持续啮合运转;齿槽是齿轮上两相邻轮齿之间的空间;端面是圆柱齿轮或圆柱蜗杆上 ,垂直于齿轮或蜗杆轴线的平面;法面指的是垂直于轮齿齿线的平面;齿顶圆是指齿顶端所在的圆;齿根圆是指槽底所在的圆;基圆是形成渐开线的发生线作纯滚动的圆;分度圆 是杠肯甩在端面内计算齿轮几何尺寸的基准圆。

  齿轮的齿形包括齿廓曲线、压力角、齿高和变位。渐开线齿轮比较容易制造,因此现代使用的齿轮中 ,渐开线齿轮占绝对多数,而摆线齿轮和圆弧齿轮应用较少。

  在压力角方面,小压力角齿轮的承载能力较小;而大压力角齿轮,虽然承载能力较高,但在传递转矩相同的情况下轴承的负荷增大,因此仅用于特殊情况。而齿轮的齿高已标准化,一般均采用标准齿高。变位齿轮的优点较多,已遍及各类机械设备中。

  另外,齿轮还可按其外形分为圆柱齿轮、锥齿轮、非圆齿轮、齿条、蜗杆蜗轮 ;按齿线形状分为直齿轮、斜齿轮、人字齿轮、曲线齿轮;按轮齿所在的表面分为外齿轮、内齿轮;按制造方法可分为铸造齿轮、切制齿轮、轧制齿轮、烧结齿轮等。

  齿轮的制造材料和热处理过程对齿轮的承载能力和尺寸重量有很大的影响。20世纪50年代前,齿轮多用碳钢,60年代改用合金钢,而70年代多用表面硬化钢。按硬度 ,齿面可区分为软齿面和硬齿面两种。

  软齿面的齿轮承载能力较低,但制造比较容易,跑合性好, 多用于传动尺寸和重量无严格限制,以及小量生产的一般机械中。因为配对的齿轮中,小轮负担较重,因此为使大小齿轮工作寿命大致相等,小轮齿面硬度一般要比大轮的高 。

  硬齿面齿轮的承载能力高,它是在齿轮精切之后 ,再进行淬火、表面淬火或渗碳淬火处理,以提高硬度。但在热处理中,齿轮不可避免地会产生变形,因此在热处理之后须进行磨削、研磨或精切 ,以消除因变形产生的误差,提高齿轮的精度。

  制造齿轮常用的钢有调质钢、淬火钢、渗碳淬火钢和渗氮钢。铸钢的强度比锻钢稍低,常用于尺寸较大的齿轮;灰铸铁的机械性能较差,可用于轻载的开式齿轮传动中;球墨铸铁可部分地代替钢制造齿轮 ;塑料齿轮多用于轻载和要求噪声低的地方,与其配对的齿轮一般用导热性好的钢齿轮。

  未来齿轮正向重载、高速、高精度和高效率等方向发展,并力求尺寸小、重量轻、寿命长和经济可靠。

  而齿轮理论和制造工艺的发展将是进一步研究轮齿损伤的机理,这是建立可靠的强度计算方法的依据,是提高齿轮承载能力,延长齿轮寿命的理论基础;发展以圆弧齿廓为代表的新齿形;研究新型的齿轮材料和制造齿轮的新工艺; 研究齿轮的弹性变形、制造和安装误差以及温度场的分布,进行轮齿修形,以改善齿轮运转的平稳性,并在满载时增大轮齿的接触面积,从而提高齿轮的承载能力。

  摩擦、润滑理论和润滑技术是 齿轮研究中的基础性工作,研究弹性流体动压润滑理论,推广采用合成润滑油和在油中适当地加入极压添加剂,不仅可提高齿面的承载能力,而且也能提高传动效率。

  中国齿轮工业在“十五”期间得到了快速发展:2005年齿轮行业的年产值由2000年的240亿元增加到683亿元,年复合增长率23.27%,已成为中国机械基础件中规模最大的行业。就市场需求与生产规模而言,中国齿轮行业在全球排名已超过意大利,居世界第四位。

  2006年,中国全部齿轮、传动和驱动部件制造企业实现累计工业总产值102628183千元,比上年同期增长24.15%;实现累计产品销售收入98238240千元,比上年同期增长24.37%;实现累计利润总额5665210千元,比上年同期增长26.85%。

  2007年1-12月,中国全部齿轮、传动和驱动部件制造企业实现累计工业总产值136542841千元,比上年同期增长30.96%;2008年1-10月,中国全部齿轮、传动和驱动部件制造企业实现累计工业总产值144529138千元,比上年同期增长32.92%。

  中国齿轮制造业与发达国家相比还存在自主创新能力不足、新品开发慢、市场竞争无序、企业管理薄弱、信息化程度低、从业人员综合素质有待提高等问题。现阶段齿轮行业应通过市场竞争与整合,提高行业集中度,形成一批拥有几十亿元、5亿元、1亿元资产的大、中、小规模企业;通过自主知识产权产品设计开发,形成一批车辆传动系(变速箱、驱动桥总成)牵头企业,用牵头企业的配套能力整合齿轮行业的能力与资源;实现专业化、网络化配套,形成大批有特色的工艺、有特色的产品和有快速反应能力的名牌企业;通过技改,实现现代化齿轮制造企业转型。

  “十一五”末期,中国齿轮制造业年销售额可达到1300亿元,人均销售额上升到65万元/年,在世界行业排名中达到世界第二。2006-2010年将新增设备10万台,即每年用于新增设备投资约60亿元,新购机床2万台,每台平均单价30万元。到2010年,中国齿轮制造业应有各类机床总数约40万台,其中数控机床10万台,数控化率25%(高于机械制造全行业平均值17%)。

  “模数”是指相邻两轮齿同侧齿廓间的齿距t与圆周率π的比值(m=t/π),以毫米为单位。模数是模数制轮齿的一个最基本参数。模数越大,轮齿越高也越厚,如果齿轮的齿数一定,则轮的径向尺寸也越大。模数系列标准是根据设计、制造和检验等要求制订的。对於具有非直齿的齿轮,模数有法向模数mn、端面模数ms与轴向模数mx的区别,它们都是以各自的齿距(法向齿距、端面齿距与轴向齿距)与圆周率的比值,也都以毫米为单位。对於锥齿轮,模数有大端模数me、平均模数mm和小端模数m1之分。对於刀具,则有相应的刀具模数mo等。标准模数的应用很广。在公制的齿轮传动、蜗杆传动、同步齿形带传动和棘轮、齿轮联轴器、花键等零件中,标准模数都是一项最基本的参数。它对上述零件的设计、制造、维修等都起著基本参数的作用(见圆柱齿轮传动、蜗杆传动等)。

  进行简易诊断的目的是迅速判断齿轮是否处于正常工作状态,对处于异常工作状态的齿轮进一步进行精密诊断分析或采取其他措施。当然,在许多情况下,根据对振动的简单分析,也可诊断出一些明显的故障。

  齿轮的简易诊断包括噪声诊断法、振平诊断法以及冲击脉冲(SPM)诊断法等,最常用的是振平诊断法。

  振平诊断法是利用齿轮的振动强度来判别齿轮是否处于正常工作状态的诊断方法。根据判定指标和标准不同,又可以分为绝对值判定法和相对值判定法。

  绝对值判定法是利用在齿轮箱上同一测点部位测得的振幅值直接作为评价运行状态的指标。

  用绝对值判定法进行齿轮状态识别,必须根据不同的齿轮箱,不同的使用要求制定相应的判定标准。

  实际上,并不存在可适用于一切齿轮的绝对值判定标准,当齿轮的大小、类型等不同时,其判定标准自然也就不同。

  按一个测定参数对宽带的振动做出判断时,标准值一定要依频率而改变。频率在1kHz以下,振动按速度来判定;频率在1kHz以上,振动按加速度来判定。实际的标准还要根据具体情况而定。

  在实际应用中,对于尚未制定出绝对值判定标准的齿轮,可以充分利用现场测量的数据进行统计平均,制定适当的相对判定标准,采用这种标准进行判定称为相对值判定法。

  相对判定标准要求将在齿轮箱同一部位测点在不同时刻测得的振幅与正常状态下的振幅相比较,当测量值和正常值相比达到一定程度时,判定为某一状态。比如,相对值判定标准规定实际值达到正常值的1.6~2倍时要引起注意,达到2.56~4倍时则表示危险等。至于具体使用时是按照1.6倍进行分级还是按照2倍进行分级,则视齿轮箱的使用要求而定,比较粗糙的设备(例如矿山机械)一般使用倍数较高的分级。

  实际中,为了达到最佳效果,可以同时采用上述两种方法,以便对比比较,全面评价

  齿轮传动是利用两齿轮的轮齿相互啮合传递动力和运动的机械传动。按齿轮轴线的相对位置分平行轴圆柱齿轮传动、相交轴圆锥齿轮传动和交错轴螺旋齿轮传动。具有结构紧凑、效率高、寿命长等特点。

  在所有的机械传动中,齿轮传动应用最广,可用来传递任意两轴之间的运动和动力。

  齿轮传动的特点是:齿轮传动平稳,传动比精确,工作可靠、效率高、寿命长,使用的功率、速度和尺寸范围大。例如传递功率可以从很小至几十万千瓦;速度最高可达300m/s;齿轮直径可以从几毫米至二十多米。但是制造齿轮需要有专门的设备,啮合传动会产生噪声。

  1开式齿轮传动式齿轮传动,齿轮暴露在外,不能保证良好的润滑。

  3闭式齿轮传动,齿轮、轴和轴承等都装在封闭箱体内,润滑条件良好,灰沙不易进入,安装精确,

  ==================================================================

  针对齿轮五种失效形式,应分别确立相应的设计准则。但是对于齿面磨损、塑性变形等,由于尚未建立起广为工程实际使用而且行之有效的计算方法及设计数据,所以目前设计齿轮传动时,通常只按保证齿根弯曲疲劳强度及保证齿面接触疲劳强度两准则进行计算。对于高速大功率的齿轮传动(如航空发动机主传动、汽轮发电机组传动等),还要按保证齿面抗胶合能力的准则进行计算(参阅GB6413-1986)。至于抵抗其它失效能力,目前虽然一般不进行计算,但应采取的措施,以增强轮齿抵抗这些失效的能力。

  由实践得知,在闭式齿轮传动中,通常以保证齿面接触疲劳强度为主。但对于齿面硬度很高、齿芯强度又低的齿轮(如用20、20Cr钢经渗碳后淬火的齿轮)或材质较脆的齿轮,通常则以保证齿根弯曲疲劳强度为主。如果两齿轮均为硬齿面且齿面硬度一样高时,则视具体情况而定。

  功率较大的传动,例如输入功率超过75kW的闭式齿轮传动,发热量大,易于导致润滑不良及轮齿胶合损伤等,为了控制温升,还应作散热能力计算。

  开式(半开式)齿轮传动,按理应根据保证齿面抗磨损及齿根抗折断能力两准则进行计算,但如前所述,对齿面抗磨损能力的计算方法迄今尚不够完善,故对开式(半开式)齿轮传动,目前仅以保证齿根弯曲疲劳强度作为设计准则。为了延长开式(半开式)齿轮传动的寿命,可视具体需要而将所求得的模数适当增大。

版权所有:http://stereocenterfm.com 转载请注明出处

成功案例success case